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A B S T R A C T   

Shoreline surveys are a common approach for documenting loads of marine macrodebris (≥ 2.5 cm) loads. When 
surveys are conducted repeatedly over time and space, patterns in source, abundance, geographic distribution, 
and composition can be detected. Yet to realize their full potential, monitoring programs that rely on surveys 
must grapple with high variability in debris abundance, and appropriately manage uncertainty when reporting 
estimates of debris quantity. A potentially important source of bias in estimating debris loads from shoreline 
monitoring datasets is variability in debris detection rates. With this in mind, we conducted field experiments 
using common strip-transect marine debris survey protocols, designed to test detection of macrodebris. We 
quantified how protocol, shoreline, and debris characteristics influence the detectability of marine macrodebris. 
Detection rates varied according to debris distance from observer (0–5 m), number of observers, debris char-
acteristics (size, color), and shoreline substrate. Our results highlight considerations for monitoring program 
design. Comparisons across datasets should be approached cautiously given differences in survey protocols and 
sources of bias that may affect debris density estimates should be quantified and addressed. We hope these results 
will inform marine debris monitoring efforts that are optimized for intended data use and impact.   

1. Introduction 

Plastic debris in the world's oceans has been described as a creeping 
crisis (Mæland and Staupe-Delgado, 2020). Shoreline debris loads are 
commonly monitored as an indicator of the state of the marine debris 
problem (GESAMP, 2019) as shorelines mark the interface between land 
and sea, are accessible, and are often in close proximity to land-based 
sources of debris. Shoreline debris loads can be measured repeatedly 
over time and space, allowing for detection of patterns in source, 
abundance, geographic distribution and composition (GESAMP, 2019) 
as well as associated drivers including disaster events (Murray et al., 
2018), ocean currents (Van Sebille et al., 2020; Gennip et al., 2019), and 
human population density and activities (Schuyler et al. 2018a; Hard-
esty et al., 2017a; Hardesty et al., 2017b; Willis et al., 2017). Monitoring 
data can also support prioritization and evaluation of preventative ac-
tions and policies. When data are collected over time, they allow for 

“before and after” intervention comparisons (Harris et al., 2020; Uhrin 
et al., 2020; Blickley et al., 2016) and when collected over space, they 
can allow for comparisons under different policy or management re-
gimes (Schuyler et al., 2018a). However, these comparisons are only 
possible when the protocols are similar enough that differences in search 
effort and approach are not confounding. Methods that are readily and 
consistently adoptable by many data collectors, and data that can be 
interoperable post-hoc (Serra-Gonçalves et al., 2019; Browne et al., 
2015), are crucial for tracking progress of marine debris prevention 
globally. 

As noted elsewhere (e.g. Uhrin et al., 2022; Serra-Gonçalves et al., 
2019; GESAMP, 2019; Browne et al., 2015) there is no single, standard 
protocol for shoreline debris monitoring. However, most employ a 
variation on plot surveys (Lippiatt et al., 2013; Hanke et al., 2013; 
Wenneker et al., 2010; Ribic et al., 1992; Hong et al., 2014), or survey 
via strip transects serving as replicates within a larger area (Burgess 
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et al., 2021; Schuyler et al., 2018b; Parrish and Burgess, 2017; Lippiatt 
et al., 2013) whereby observers count debris items from within a 
geographic sampling unit of known dimensions to establish marine 
debris items per unit length or area of shoreline (Burgess et al., 2021; 
GESAMP, 2019; Schuyler et al., 2018b; Cheshire et al., 2009; Ryan et al., 
2009). Therefore, understanding the influence of protocol characteris-
tics, debris characteristics, and shoreline characteristics on debris 
detection within and across these methods is important for making 
comparisons of debris loads over time and space, ensuring that pre-
vention and management decisions are made accounting for un-
certainties and with the best available data. 

Prior analyses of marine debris monitoring methods and datasets 
have highlighted considerations for data quality, interpretation and 
interoperability that include characteristics of data collectors, search 
area and duration, debris characteristics, and the environment or con-
ditions of the survey (Lavers et al., 2016; Hardesty et al., 2017b; van der 
Velde et al., 2017; McWilliams et al., 2018; Angelini et al., 2019; Uhrin 
et al., 2020). While there is evidence that data collected by students and 
adult volunteers is of quality equivalent to, or greater than that by 
professionals (van der Velde et al., 2017; Hidalgo-Ruz and Thiel, 2015), 
characteristics of participants such as height, education level, and 
experience correlate with varying detection of marine debris (Angelini 
et al., 2019; van der Velde et al., 2017; Lavers et al., 2016). Larger 
survey team size and observer fatigue, two aspects of search effort, 
correlate with detection of higher and lower debris loads, respectively 
(Uhrin et al., 2020; Hardesty et al., 2017b; Lavers et al., 2016). Debris 
size and its treatment within a protocol, i.e. inclusion of a lower size 
limit (Hardesty et al., 2017b) as well as debris color (Angelini et al., 
2019) and substrate type (Lavers et al., 2016; McWilliams et al., 2018), 
have been shown to influence debris detection and load estimates. 

With the goal of optimizing marine debris shoreline monitoring, for 
data use and impact we considered how data collection protocols, 
shoreline characteristics, and debris characteristics influence the 
detectability of marine debris during surveys. Specifically, we asked the 
following questions: 

Q1. . Does debris detection improve as the number of observers in-
creases (where an observer is a survey participant engaged in the search 
for marine debris)? 

Q2. . How does the observer search pattern influence debris detection? 

Q3. . Is debris detection influenced by substrate (sand, cobble)? 

Q4. . Is debris detection influenced by shoreline zone (i.e., vegetation, 
wood, bare, wrack, surf)? 

Q5. . Is debris detection influenced by debris item size and/or color? 

Q6. . Is debris detection influenced by linear distance between the item 
and the observer? 

2. Methods 

We designed two field trial approaches (fixed effort, variable effort) 
that collectively assessed the influence of protocol, debris, and shoreline 
characteristics on detection of marine debris. Fixed effort trials kept 
survey effort constant (single observer per transect), and were designed 
to assess individual item detection and how detection rate varied with 
shoreline and debris characteristics, as well as debris distance from the 
observer. The subsequent variable effort trials utilized paired analyses 
to examine gross detection rate, or the proportion of items detected 
during a survey, as a function of the number of observers (one, two, or 
three) and search pattern. 

In the sections below, we describe the overall field set up that was 
common to both sets of trials, followed by the specifics of each trial, and 
end with the approach to data analysis for each trial. 

2.1. Data collection location and timing, and participant recruitment 

In the fall of 2018 and spring through fall of 2019 (Table 1), we 
conducted field trials at three sites in the greater Seattle area of Wash-
ington State USA: Port Townsend Marine Science Center (PTMSC), 
Carkeek Park, and Ocean City (Fig. 1). These sites were chosen for their 
public accessibility and presence of amenities including onsite parking, 
restrooms, and running water. Sites had driftwood and vegetated back 
barrier features as well as cobble (PTMSC, Carkeek Park) or sandy 
(PTMSC, Ocean City) shoreline substrates. 

We recruited volunteer observers from the Coastal Observation and 
Seabird Survey Team (COASST) participant corps, University of Wash-
ington students, faculty and staff, and through advertisement with 
regional National Oceanic and Atmospheric Administration (NOAA) and 
COASST partner organizations (n = 99 participants). Attendance was 
variable across field trial days (Table 1). Many participants (n = 18) 
attended multiple field trial days but on any given day, no single person 
surveyed an individual transect more than once (Table 1). 

2.2. General field setup 

We define a trial as a site- and day-specific event in which shoreline 
marine debris surveys were carried out; transect refers to within-trial 
experimental units (n = 3–4 per trial; Table 1) that were established 
at fixed locations within a site on a given day; and survey refers to a 
search made by an observer or team of observers on a specific transect. 
In each trial, we established five meter wide transects oriented from the 
water's edge to the backshore, and five meters into the vegetation or up 
to the first physical barrier (e.g., parking lot, seawall). Transects of five 
meters width were chosen because they are the standard in U.S. shore-
line monitoring programs (Lippiatt et al., 2013; Parrish and Burgess, 
2017). Transect locations were chosen for diversity in shoreline char-
acteristics, attempting to encompass areas with representative shoreline 
zones of surf (area from the water's edge to the tide line), wrack (flotsam 
accumulating area from the lowest tide line to the uppermost fresh tide 
line), driftwood (upper part of the shoreline that accumulates driftwood 
from storm surges in the Pacific Northwest, USA), and vegetation (back 
barrier marked by shrubs or dune grasses). High-traffic (pedestrian) 
areas of the shoreline were avoided. Because public access to the 
shoreline was not restricted during our surveys, we intentionally mini-
mized the extent of the transect into the portion of the shoreline closest 
to the water's edge to allow beachgoers to pass by without disrupting the 
transect. 

During a trial, two to four transects were established on the 

Table 1 
Summary of field trial location and dates, including number of transects (n 
trans.), number of observers (n obs.), and a breakdown of the number of each 
survey type performed.  

Trial 
# 

Site Date Trial 
type 

n 
obs.a 

n 
trans. 

Surveys 

1 PTMSC Sep- 
2018 

Fixed 19 3 45 (Left: 16, Mid: 
16, Right: 13) 

2 Carkeek Apr- 
2019 

Fixed 18 2 34 (Left: 10, Mid: 
12, Right: 12) 

3 PTMSC June- 
2019 

Variable 22 4 18 (1-Obs: 8, 2- 
Obs: 6, 3-Obs: 4) 

4 Carkeek Jul- 
2019 

Variable 21 4 22 (1-Obs: 8, 2- 
Obs: 8, 3-Obs: 6) 

5 Carkeek Oct- 
2019 

Variable 14 3 14 (1-Obs: 6, 2- 
Obs: 5, 3-Obs: 3) 

6 Ocean 
City 

Nov- 
2019 

Variable 35 4 39 (1-Obs: 14, 2- 
Obs: 14, 3-Obs: 
11)  

a These numbers represent the number of individuals that took part in that 
day's field trial, but as individuals surveyed as a pair, or trio, the number of 
combinations of survey “team” was larger than this. 
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shoreline, each delineated by colored flags delimiting the corners, edges, 
and midline of the transect (Fig. 2). The number of transects was 
determined by the number of staff available to guide the volunteers and 
ensure quality control. Transects were thoroughly cleared of all existing 
marine debris by repeatedly passing over the entirety of the transect and 

removing all debris items by hand and disposing of them until no further 
items were found. Then, each transect was populated with 20 debris 
items (≥ 2.5 cm) from one of four experimental debris kits (Table S1). 
This sample size fit the criteria of falling within the average range of 
debris quantities found on historical COASST surveys from within the 

Fig. 1. An outline of the west coast of the United States and the State of Washington are provided for reference (A). Location of the three field trial sites (closed black 
circles) in Washington state (B). Fixed effort trials occurred at Carkeek Park and Port Townsend Marine Science Center, variable effort trials occurred at Carkeek Park, 
Port Townsend Marine Science Center, and Ocean City. 

Fig. 2. Search pattern schematic for fixed effort (left panel) and variable effort trials (right panel). In fixed effort trials there were three search patterns: a single 
observer searched from the line at Edge-left, Midline or Edge-right. In variable effort trials there were three search patterns: 1 Observer - One lone observer walking 
down the midline of the transect records all information, 2 Observers - Two observers walking down the edges (opposite one another) of the transect while one of 
them records all information, and 3 Observers - Three observers where two search walking down the edges of the transect and a third searches down midline, one of 
which records information. Transects were seeded with debris, and dependent on the search pattern, measurements of distance from observer (dl, dm, and dr, 
respectively) were made from the corresponding search line to the piece of debris found. 
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region (unpublished data, available by request), while being reasonable 
enough to manage and recover during a field trial. Cleaning the shore-
line and using a known quantity, location, and type of debris allowed us 
to document which items were detected during each transect survey. 
The composition of items in each experimental debris kit was based on 
the proportion of different debris characteristics (type, material, size, 
and color) within the COASST dataset (characteristics are described in 
Parrish and Burgess, 2017, see supplementary materials Table S1). We 
directly labeled or tagged and inventoried each debris kit item with a 
serial number so that item detection within a survey could be uniquely 
attributed to item characteristics and location. Items ranged in size from 
2.5 cm up to 50 cm in the longest dimension. To represent item size, we 
used maximum item surface area calculated as the product of the item's 
two longest orthogonal dimensions (i.e. length by width). Within each 
transect, we scattered debris on the surface haphazardly such that it was 
present in all shoreline zones. We buried the inventory tags in the sub-
strate to prevent sighting as a function of inventory tag rather than 
debris item; tags also served as anchors, preventing debris movement. 

For both fixed and variable-effort trials, observers were separated in 
space and/or time to minimize the chances that an incoming observer 
could see or hear others actively conducting surveys. To ensure an active 
observer did not bias the surveys of subsequent observers, transects were 
“reset” after each survey, smoothing the substrate and reburying tags as 
needed. Debris items and their placements remained unchanged among 
surveys in a given transect. Thus, any observer on a given transect 
experienced the same experimental debris kit and similar amounts of 
surface trampling. 

2.3. Fixed effort trials 

Fixed effort trials involved a single observer conducting each survey 
and were performed at PTMSC (September 2018) and Carkeek Park 
(April 2019; Table 1). These trials focused on research questions Q2, Q3, 
Q4, Q5, and Q6, and by assessing gross survey detection rate (proportion 
of items observed in a survey vs not; hereafter, gross detection rate) as a 
function of search pattern (defined below) as well as individual item 
detection rate as a function of item (size, color) and shoreline (substrate, 
zone) characteristics, and debris distance from observer (defined 
below). Observers were taught how to perform surveys using two basic 
search patterns: edge searches, where the observer looked into the 
transect from the right or left edge (a distance of 5 m); and midline 
searches, where the observer walked down the middle of the transect 
searching in both directions toward each edge (a distance of 2.5 m in 
either direction; Fig. 2). In both cases, observers were instructed to begin 
their survey from the back of the shoreline walking toward the water. 
During a survey, the observer remained in a standing position and 
scanned the transect area looking laterally and slightly forward for any 
“manmade items” >2.5 cm (roughly the size of a bottle cap). They were 
not aware that known quantities of debris had been distributed 
throughout the transect, or what the expected count of debris was in 
each transect. They were not permitted to move into the transect, 
backtrack or look backwards as this would have compromised the dis-
tance variable. If an item was sighted by an observer, they called out to 
research staff who then logged the item inventory number and measured 
the minimum orthogonal distance (i.e. at a right angle to the direction of 
travel) between the observer and the item in centimeters (distance from 
observer). This distance was chosen, rather than the distance the item 
was first sighted, to represent the minimum distance at which an item 
could be detected (or not). If the debris item's tag was exposed in the 
course of collecting data, staff reburied the tag before moving to the next 
item. 

Observers performed between one and three surveys during a trial, 
moving among randomly assigned transects and shifting among search 
patterns (edge-left, edge-right, midline) such that search pattern di-
versity was maximized within observer, and equilibrated across tran-
sects within trial. Some attempt was made to increase the number of 

midline surveys, to ensure adequate sample size should subsequent an-
alyses determine no effect of left or right edge search pattern, allowing 
edge surveys to be binned. 

2.4. Variable effort trials 

Variable effort trials addressed research questions Q1 and Q2 and 
were designed to assess gross detection rate as a function of the number 
of observers and their search pattern. During these trials, we varied the 
number and arrangement of observers according to one of three search 
patterns (Fig. 2). Variable effort trials were performed at PTMSC (June 
2019), Carkeek Park (July and October 2019), and Ocean City 
(November 2019; Table 1). Because these trials had multiple simulta-
neous observers, distance from observer was not measured, and so we 
limit detection analyses from these trials to overall gross detection rate, 
as a function of item characteristics only (size, color), omitting analyses 
of item location (zone, substrate) and distance from observer. In variable 
effort trials, observers also recorded data themselves (item serial num-
ber), which necessitated leaving their search line to inspect the item. 
Thus, variable effort trials were more representative of a standard ma-
rine debris survey, albeit with different levels of effort. 

2.5. Data analysis – fixed effort trials 

To examine overall differences in detection rate among the fixed 
effort search patterns, we calculated gross detection rate as the pro-
portion of items observed out of the 20 deployed debris items for each 
survey performed. We then calculated the mean and 95 % confidence 
intervals of detection rate via bootstrap resampling (1000 permuta-
tions), for each of the three fixed-effort search patterns (edge-right, 
edge-left, midline). To control for inter-transect variability in detection 
rate (i.e. among trials and among transects within trials) we also 
calculated a bootstrap mean (±95 % CI; 1000 permutations) for paired 
differences in detection rate between midline and edge search patterns 
conducted within the same transect. 

A series of models were then used to estimate how item detectability 
varies with both item and shoreline characteristics, as well as search 
pattern and distance from observer (Table 2). Our dependent variable 
was individual item detection within a given survey, taking a value of 1 

Table 2 
Predictors used in detection rate models for fixed effort surveys. Reference value 
refers to the value at which that predictor was held constant when obtaining 
model-averaged predictions of detection rate.  

Name Type Nlevels Levels/range Effect 
type 

Reference 
value 

Distance Continuous  edge: 0–5 m 
midline: 0–2.5 
m 

Fixed 2 m 

Item sizea Continuous  1.5–18.5 cm Fixed 3 cm 
Site Factor  2 Carkeek, 

PTMSC 
Fixed Ptmsc 

Search 
pattern 

Factor  2 Edge, midline Fixed Edge 

Item color Factor  4 Bright, dull, 
clear, white 

Fixed White 

Substrate Factor  2 Cobble, sand Fixed Sand 
Zone Factor  4 Bare, wrack, 

wood, 
vegetation 

Fixed Bare 

Observer 
id 

Factor  37  Random  

Survey id Factor  79  Random  
Item- 

location 
id 

Factor  100  Random  

Transect id Factor  5  Random   

a Item size was included in the model as the square root of the item's maximum 
visible surface area (product of each item's longest two dimensions). 
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if the item was detected, and 0 otherwise. Because our response variable 
was binary, we used binomial Generalized Linear Mixed Models (GLMM; 
logistic link function) using the glmmTMB package (Brooks et al., 2017) 
to model the probability of item detection according to different com-
binations of predictor fixed and random effects (Table 2). Modelling 
detection at the item level allowed us to generate detection curves as a 
function of distance from observer as well as item and shoreline char-
acteristics. Because transects were populated with a known debris 
quantity, modelled detection rate was absolute. We considered seven 
fixed effects (Table 2). Distance from observer and item size were both 
continuous variables. Categorical variables included search pattern (two 
levels), item color (4 levels), site (2 levels), substrate (2 levels), and zone 
(4 levels) (Table 2). Item size was square root transformed to reduce the 
potentially high leverage of the relatively fewer large sized items on 
fitted relationships. Because item color has many possible levels, we 
conducted a preliminary analysis to inform color groupings based on 
detection probability (see supplemental materials, Table S2, Fig. S2). 
This resulted in four color groups: bright (blue, yellow, red), dull (black, 
brown, grey), clear (including transparent with some colorful lettering 
as in a single-use cup with a brand imprinted), and white, which were 
used throughout all subsequent analyses. We also considered four 
random effects within our models (Table 2). Observer ID and transect ID 
account for consistently higher/lower detection rates for specific ob-
servers (i.e. some observers are more/less proficient than others) and 
transects (i.e. location-specific differences). Survey ID incorporates 
observer- and transect-level variability but potentially also accounts for 
differences in detection rate at the whole survey level that might be 
attributable to extrinsic (i.e. differences in lighting brought on by cloud 
cover) or intrinsic (i.e. relative observer fatigue) factors not accounted 
for by other model predictors. The random effect of item location ac-
counts for multiple observations of the same item in a similar location 
within each transect, accounting for variability not accounted for by 
recorded item characteristics (size, color) and/or location (distance, 
substrate, zone). Search pattern (edge, midline) was included in our 
models as both a fixed effect, modelling differences in overall detect-
ability between search patterns, and as an interaction term with distance 
from observer to model different changes in detectability with 
increasing distance for each search pattern. We also included quadratic 
terms for continuous variables (distance, item size) to allow for addi-
tional flexibility in the functional form (i.e. not a strict logistic function) 
of those fitted relationships. 

Models representative of all possible predictor combinations were 
fitted to the data, and subsequently ranked based on small sample size 
corrected Akaike's Information Criterion (AICc). Model-specific AICc 
values were then used to calculate Akaike weights as a measure of the 
support in favor of a given model being the best within the full model set 
(Burnham et al., 1980; Galipaud et al., 2017). Akaike weights were then 
used to identify the 99 % confidence set of models as the ordered (lowest 
to highest AICc values) set of models whose cumulative Akaike weights 
sum to 0.99 (Symonds and Moussalli, 2011). Likelihood ratio tests and 
calculation of evidence ratios were utilized for specific inclusions/ex-
clusions of predictors relative to the highest ranked model to identify the 
level of support for including those predictors within the model. 
Parameter estimates for all predictors were subsequently obtained via 
model-averaging (see Table S4). 

To examine fitted relationships/differences among categorical pre-
dictor levels and to determine predictor importance based on estimated 
effect sizes, we calculated model-averaged detection rates for different 
search patterns, number of observers, and shoreline, and debris char-
acteristics. Model-averaged values were obtained by holding all pre-
dictors constant, with the exception of the predictor whose effect was 
under examination (see Table 2 for predictor reference values). For 
continuous variables of item size and distance, model-averaged detec-
tion rates were calculated across the range of values for those variables 
(Table 2) to examine the functional form of those relationships. For 
categorical variables, model-averaged detection rates were calculated 

for each category level (Table 2). Due to the mix of categorical and 
continuous predictors we assessed individual predictor importance as 
the maximum difference in model-averaged detection rate among levels 
for categorical predictors, or across the range of observed values for 
continuous predictors. This gave a measure of maximal effect size that 
could be attributed to that predictor when changed within the con-
straints of the field trial design (i.e. maximum detection distance at 5 m, 
or minimum item size = 2.5 cm). Uncertainty in model-averaged 
detection rates was calculated using bootstrap resampling (bootMer 
function in the lme4 package in R; Bates et al., 2015), followed by 
model-averaging. For a given debris item (i.e. size, color, distance) and 
search pattern (right edge, left edge, midline), 10,000 bootstrap repli-
cates of estimated detection rate were generated from each model within 
the model set, where variation among bootstrap replicates represents 
within model uncertainty. We then constructed a distribution of detec-
tion rates by drawing 10,000 values from the combined pool of boot-
strap replicates across models, where the number of draws for a 
particular model was proportional to its standardized Akaike Weight (i. 
e. a model with w = 0.3 contributed 3000 bootstrap replicates to the 
combined distribution). The resulting distribution therefore reflects 
within (i.e. replicates from the same model) and among (i.e. replicates 
from different models) model uncertainty, and was subsequently used to 
calculate a model-averaged mean and 95 % confidence interval of 
detection rate for each debris item scenario. Because variable impor-
tance was constructed as the maximum difference in detection rate 
across a variable's range, paired differences for a particular predictor 
variable (i.e. detection rate at distance 0 m compared to 5 m, or the 
maximum compared to minimum detection rate across levels of item 
color) were calculated for each bootstrap set. The distribution of paired 
differences was then processed as described above to calculate the 
overall mean and 95 % confidence interval of effect size. 

2.6. Data analysis – variable effort trials 

For the variable effort trials, we were interested in overall debris 
detection (i.e. at the transect level) and how detection varies between 
survey effort (inter-effort), but also within survey effort (intra-effort) as 
a measure of survey consistency. As we did for the fixed-effort trials, we 
calculated bootstrapped 95 % confidence intervals of mean gross 
detection rate for each level of survey effort (1, 2, or 3 observers; Fig. 2). 
To control for variability among transects, we also calculated all possible 
pairwise differences in gross detection rate between (inter) and within 
(intra) search patterns, restricted such that pairwise comparisons were 
only calculated among surveys performed on the same transect. We then 
calculated bootstrapped 95 % confidence intervals of the mean pairwise 
difference in gross detection rates by generating 1000 randomly drawn 
(with replacement) sets of n pairwise differences, where n is the number 
of available pairwise differences for a given comparison (i.e. inter: 1 vs 2 
observers; intra: 2 vs 2 observers), and calculating the mean value for 
each randomly drawn set. We then present the overall mean and 95 % CI 
as the mean and 95 % range of the resultant distribution of sample 
means. We also repeated these analyses on subsets of debris items based 
on size and color, to examine whether these differences were more/less 
pronounced for certain debris types. All analyses were performed in R 
version 4.2.1 (R Core Team, 2022). 

3. Results 

3.1. Fixed effort trials 

A total of 79 fixed effort surveys (5 transects, 37 observers) were 
performed (Table 1). Three transects were surveyed by 19 observers at 
PTMSC in September 2018 while two unique transects were surveyed by 
18 observers at Carkeek Park in April 2019 (Table 1). Because the 95 % 
confidence intervals overlap edge (right, left) for mean gross detection 
rate (right: 76.9 %, 95 % CI = 71.3–81.8 %; left: 70.0 %, 95 % CI =
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63–76 %), we combined these results for a total of two search patterns: 
edge and midline. Edge surveys had a slightly lower mean gross detec-
tion rate at 73.2 % (95 % CI: 69.2–77.1 %) versus midline surveys at 
77.0 % (95 % CI: 72.3–81.3 %), but mean pairwise differences (i.e. 
controlling for transect) between search patterns overlapped with zero 
(mean edge – midline difference = − 3.3 %, 95 % CI = − 9.0, 2.1), 
indicating that both search patterns performed similarly at the whole 
transect level. 

3.2. Item detectability within fixed effort trials 

Among all model permutations of item detection rate (probability of 
item detection), no particular model could be identified as unequivo-
cally the best model as the highest ranked model had an Akaike weight 
of 0.044 (Table 3), and the 99 % confidence set of models contained 366 
different models. Models included within the 99 % confidence set 
consistently included the predictors of distance, item size (linear and 

quadratic terms), and item color, as well as random effects of survey and 
item-location (Table S4). The high degree of model-selection uncer-
tainty, as indicated by the low Akaike weight (0.044) of the highest 
ranked model, was driven by several predictors that had marginal effects 
on model likelihood, as well as competition between linear and 
quadratic functional forms of the distance relationship (see Table 3 for 
models with ΔAICc ≤2). The effect of distance was better modelled via a 
quadratic rather than a linear term, although differences in AICc (ΔAICc 
= 1.27) were small enough to suggest that the associated differences in 
functional form on model fit were marginal. The inclusion of shoreline 
zone and substrate were moderately supported based on likelihood ratio 
tests (zone: χ2 = 9.05, df = 3, p = 0.029, substrate: χ2 = 4.14, df = 1, p =
0.042) and evidence ratios (zone: ER = 4.37, substrate: ER = 2.86) be-
tween the highest ranked model and equivalent models excluding those 
predictors (Table 3). When added to the highest-ranked model, the 
additional variables of site (ΔAICc = 0.83), search pattern (ΔAICc =
1.8), and random effects of observer (ΔAICc = 0.33) all resulted in 
higher AICc values. 

Predictor importance, as evaluated based on model-averaged 
detection rate effect sizes, were highest for distance and color (differ-
ence in detection rate, Δd = 0.5–0.6), followed by item size and shore-
line zone (Δd = 0.3–0.4), whereas shoreline substrate (Δd = 0.12), site 
(Δd = 0.05) and search pattern assessed at 0 m (Δd = 0.00) had the 
lowest effect sizes (Table 4). However, while shoreline substrate and 
zone had non-zero mean effect sizes, the confidence intervals for both of 
these factors encompassed zero, indicating relatively higher uncertainty 
in their importance compared to other predictor variables (Table 4). 

Modelled detection rates as a function of size (distance held constant 
at 2 m) indicate that there is a decrease in detectability for items smaller 
than 6 × 6 cm (roughly equivalent to an extra large hen's egg), but that 
detection rate is high, and approximately constant for items above this 
size (Fig. 3A). Detection rate also varied with item color decreasing as 
follows: bright > white > clear > dull (Fig. 3B), albeit with considerable 
uncertainty for the latter two color groups. Detection rate as a function 
of distance (the minimum orthogonal distance between the observer and 
the item) are presented for two scenarios: a small (9cm2, or 3 cm × 3 cm) 
white item, roughly a large bottle cap, and a larger (100cm2, or 10 cm ×

Table 3 
Models fitted to item detectability from fixed-effort trials in rank order (ΔAICc 
≤2) (AICc = second-order bias adjusted AIC, ΔAICc = AIC differences, ω =
Akaike weights, ER = evidence ratios).  

# Model log-lik. df AICc ΔAICc wAICc ER  

1 

search:distance2 +

size + size2 + color 
+ substrate + zone 
+ rand(survey) +
rand(item-location)  

− 621.7  14  1271.6  0  0.044  1.00  

2 

search:distance2 +

size + size2 + color 
+ substrate + zone 
+ rand(observer) 
+ rand(survey) +
rand(item-location)  

− 620.8  15  1271.9  0.33  0.037  0.84  

3 

site + search: 
distance2 + size +
size2 + color +
substrate + zone +
rand(survey) +
rand(item-location)  

− 621.1  15  1272.4  0.83  0.029  0.66  

4 

site + search: 
distance2 + size +
size2 + color +
zone +
rand(survey) +
rand(item-location)  

− 622.2  14  1272.6  1.04  0.026  0.59  

5 

site + search: 
distance2 + size +
size2 + color +
substrate + zone +
rand(observer) +
rand(survey) +
rand(item-location)  

− 620.2  16  1272.7  1.06  0.026  0.59  

6 

site + search: 
distance2 + size +
size2 + color +
zone +
rand(observer) +
rand(survey) +
rand(item-location)  

− 621.2  15  1272.7  1.13  0.025  0.57  

7 

search:distance +
size + size2 + color 
+ substrate + zone 
+ rand(survey) +
rand(item-location)  

− 622.3  14  1272.9  1.27  0.023  0.53  

8 

search:distance +
size + size2 + color 
+ substrate + zone 
+ rand(observer) 
+ rand(survey) +
rand(item-location)  

− 621.3  15  1273.0  1.39  0.022  0.50  

Table 4 
Model-averaged predicted detection rate and effect sizes (maximal difference in 
detection rate attributable to that predictor) for predictor variables in the fixed- 
effort trials. Predicted detection rate and effect sizes are for a reference debris 
item (3 × 3 cm white piece of debris, located on bare sand 2 m away from an 
observer performing an edge survey), modified according to the presented level 
for each predictor variable.  

Predictor Level Predicted mean 
detection rate 

Predictor effect size 

Mean 95 % CI Mean 95 % CI 

Site 
PTMSC  0.83 [0.66, 0.95]  0.05 [− 0.02, 0.28] 
Carkeek  0.78 [0.54, 0.94]   

Search [0 m] 
Edge  0.91 [0.80, 0.98]  0.00 [− 0.04, 0.06] 
Midline  0.91 [0.80, 0.98]   

Distance [Edge] 0 m  0.91 [0.80, 0.98]  0.59 [0.30, 0.76] 
5 m  0.32 [0.11, 0.61]   

Distance [Midline] 0 m  0.91 [0.80, 0.98]  0.49 [0.15, 0.77] 
2.5 m  0.42 [0.12, 0.77]   

Color 

white  0.83 [0.66, 0.95]  0.55 [0.20, 0.83] 
bright  0.95 [0.88, 0.99]   
clear  0.66 [0.43, 0.86]   
dull  0.40 [0.14, 0.73]   

Size 1.5 cm  0.65 [0.34, 0.89]  0.34 [0.08, 0.68] 
18.5 cm  0.99 [0.97, 1.00]   

Substrate 
sand  0.83 [0.66, 0.95]  0.12 [− 0.01, 0.46] 
cobble  0.72 [0.36, 0.93]   

Zone 

bare  0.83 [0.66, 0.95]  0.39 [0.00, 0.76] 
wood  0.81 [0.66, 0.93]   
wrack  0.82 [0.64, 0.95]   
veg  0.47 [0.13, 0.88]    
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10 cm) white item, as would be the case for a half pint juice or milk 
carton. Increasing distance was predicted to result in an initially small 
decrease in detection rate within the first half of the transect width 
(1.25 m for midline, 2.5 m for edge search patterns) for each search 
pattern, followed by a more rapid decrease in detection for more distant 
items (Fig. 3C). The rate of change of detection rate was more extreme 
for midline surveys than for edge surveys (see also Table S3 for model 
parameter estimates), but due to the greater maximum search distance, 
edge surveys were predicted to have a lower detection rate at the 
opposite edge of the transect than for midline searches (Fig. 3C). Eval-
uated at half of the maximum distance for each search pattern (i.e. 1.25 
m for midline surveys and 2.5 m for edge surveys) both were predicted 
to have similar detection rates for a small debris item (edge = 0.79, 
midline = 0.81; Fig. 3C). 

Model-averaging suggested that detection rate was higher on sand 
than on cobble (Table 4, Fig. 3D). For small (e.g. bottle cap) items, 
detection rate on cobble was approximately 11 % lower compared to 
sand on average, although there was a high degree of uncertainty sur-
rounding these estimates (Fig. 3D). Model-averaged detection rates were 
indistinguishable among the wrack, bare, and driftwood shoreline 
zones, but were higher than in the vegetation zone (Fig. 3D). However, 
the estimate of detection rate in the vegetation zone had a high degree of 
uncertainty. 

Within our random effects, survey-level differences in detection rate 
were better modelled via the survey ID random effect, than via random 

effects attributable to observer and transect level variability (Table 3). 
However, observer random effects were included in the second ranked 
model in addition to survey random effects, which had almost equiva-
lent support to the highest ranked model (evidence ratio of 0.84; 
Table 3). It is worth noting that observer variability may have been 
largely accounted for by the survey random factor, as surveys are 
necessarily nested within observers. 

3.3. Variable effort trials 

Variable effort trials were carried out on four separate dates among 
three locations, and data were collected from 93 surveys (15 unique 
transects, 92 observers), of which 39 %, 35 % and 26 % were carried out 
by single-, double-, and triple-observer teams, respectively (Table 1). 
Four transects were surveyed by 22 observers at PTMSC in June 2019, 
four unique transects were surveyed by 21 observers at Carkeek Park in 
July 2019, three unique transects were surveyed by 14 observers at 
Carkeek Park in October 2019, and four unique transects were surveyed 
by 35 observers at Ocean City in November 2019 (Table 1). 

Increasing the number of observers improved gross detection rate of 
debris, with a single observer having an average detection rate of 80 % 
compared to 85 % for two observers, and 89 % for three (Fig. 4A). 
Increasing effort also decreased inter-observer (or inter-team) vari-
ability, measured as the average of all differences among teams within a 
site performing the same search pattern. Doubling the number of 

Fig. 3. Model-averaged mean item detection rates for effects of (A) item size, (B) item color, (C) orthogonal distance from the observer for edge and midline search 
patterns, and (D) beach zone and substrate where the item was located. Shaded areas and error bars indicate model-averaged 95 % confidence intervals of the mean 
predicted detection rate. Unless otherwise stated, predictions are made holding other model factors constant equal to: site = PTMSC, search pattern = edge, distance 
= 2 m, item color = white, item size = 9 cm2 (3 cm × 3 cm), beach substrate = sand, beach zone = bare. 
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observers reduced the mean among team difference in detection rate 
from ±12 % to ±7 %, and adding a third observer reduced this further to 
±3.5 % on average (Fig. 4C). 

Results were broadly similar when items were separated by size or 
color, but there were some notable differences (Fig. 4). The addition of a 
second observer had only a marginal effect on the detection of small 
(<16cm2) items (+4.8 %), but adding a third observer resulted in a 
marked increase in gross detection rate (+12 % compared to 2 ob-
servers; Fig. 4A). However, for larger items (medium: surface area 16 – 
64cm2, large: surface area > 64 cm2) the addition of a third observer had 
no effect on gross detection rate (Fig. 4A). Conflicting results were found 
for item color where bright/white items (pooled to boost item sample 
size) were only found more often after the addition of a third observer, 
whereas for dull/clear items, detection rates were the same for three 
versus two person teams (Fig. 4A). However, overall bright/white items 
were detected more often than dull/clear items, supporting our earlier 
findings (Fig. 4A). Consistency, as measured by among-team differences 
in gross detection rate showed a pattern of decreasing variability with 

increasing team size for all item classes, with the exception of detection 
rates of medium and large items which were equally variable between 
teams consisting of two and three observers, but lower than for a single 
observer (Fig. 4C). 

4. Discussion 

We examined shoreline macrodebris detection rates in real-world 
survey scenarios, documenting and quantifying potential sources of 
error in debris load estimates. We found that characteristics of the 
protocol, the debris itself, and of the shoreline can all influence the 
detectability of marine debris during shoreline surveys. Results are 
intuitive; items nearer to an observer are more likely to be detected than 
those farther away, larger team sizes detect more debris and have less 
variable detection among surveys, larger and more brightly colored 
items are more likely to be detected than smaller duller ones, and survey 
environments that are complex or have visual obstructions result in 
lower detection. The influences on detectability that we examined, and 
whose importance was supported by the model selection process, pre-
sent considerations for marine debris shoreline survey design, analysis, 
and interpretation. 

4.1. Contextualizing factors affecting detection: debris distance from 
observer 

The largest effect size with high confidence was for orthogonal dis-
tance between an observer and a debris item. We found that debris items 
at the foot of an observer (0 m) were detected 91 % of the time on 
average but only 42 % of the time at 2.5 m and 32 % at 5 m. This finding 
suggests that monitoring protocols using strip transects of a given width 
with a prescribed search pattern (i.e. standardizing the maximum dis-
tance an observer is searching for debris) will have more consistent 
detection rates compared to surveys of larger plots without prescribed 
search patterns (e.g. most marine debris clean-ups where data are also 
collected). Standardized transect widths and search distances will 
maintain a consistent detection probability when other detection factors 
are consistent, and shorter distances from observers will have better 
detection rates than longer ones. Our results suggest that that the opti-
mum search distance is no >1 m. 

4.2. Contextualizing factors affecting detection: debris size and color 

Debris size and color also had relatively large effect sizes and con-
fidence, suggesting that shoreline debris counts for smaller, dull items 
likely result in underestimates compared to larger, brightly colored 
items. Our results suggest that a red playing card or blue bottle cap on a 
sandy shoreline located two meters from an observer will be detected 
close to 100 % of the time, and there is little variation around that 
average; whereas a brown bottle cap at the same distance from an 
observer will be detected less than half the time on average but the 
variability will range from ~15 to 75 %. In theory, our results could be 
used to apply a correction factor to debris estimates for surveys under 
similar conditions. However, without knowing the true relative fre-
quency of debris colors and sizes, estimating the effect of variable 
detection rates on overall debris estimates poses a challenge. 

While the size of debris that is encountered cannot be controlled, the 
size range that is counted as part of a protocol will inform the influence 
of detectability on count accuracy. We found that items equal to 
approximately 6 cm × 6 cm were reliably detected, but this threshold is 
notably larger than the target size range for macrodebris monitoring 
protocols. A common lower size limit for shoreline monitoring protocols 
is 2.5 cm, either as an absolute minimum (e.g. NOAA Marine Debris 
Monitoring and Assessment Project (Burgess et al., 2021), African Ma-
rine Litter Monitoring Method (Barnardo et al., 2020), Korea National 
Beach Litter Monitoring Program (Hong et al., 2014); this study) or as a 
cutoff when binning counts as in OSPAR's Guide to Monitoring Beach 

Fig. 4. Results of variable effort surveys (1–3 observers), expressed as (A) mean 
gross detection rate, (B) mean paired differences (controlling for transect) in 
gross detection rate between alternate team sizes and (C) average among team 
differences in gross detection rate. Results are presented for all debris items, as 
well as for items delimited by size (small: surface area < 16 cm2, medium: 
surface area 16–64 cm2, large: surface area > 64 cm2) and color (bright or 
white items, versus dull or clear items), based on detection model results. All 
values were calculated via bootstrap resampling. Sample sizes (n) represent the 
number of surveys (gross averages, A), or the number of pairwise comparisons 
(pairwise differences, B–C) for that comparison. 

H.K. Burgess et al.                                                                                                                                                                                                                              



Marine Pollution Bulletin 198 (2024) 115905

9

Litter (Wenneker et al., 2010). However, even lower size cut-offs are also 
employed (e.g. 5 mm; Sustainable Coastlines, 2023), and some protocols 
have no lower size limit (Schuyler et al., 2018b). In these latter cases, 
underestimation and uncertainty will likely be amplified compared to 
our findings. 

Two prior studies explored detection of items smaller than 2.5 cm 
(Lavers et al., 2016; Angelini et al., 2019) though did not test the effect 
of size on detection, both found that color was important. Lavers et al. 
(2016) reported variable detection probabilities over time for observers 
repeatedly examining 50 × 50 cm quadrats on sandy shorelines for 
variously colored plastic fragments (white, blue, black) and resin pellets 
(white, black) ranging in size from 2.5 to 60 mm. Raw detection prob-
abilities were highly variable across each observer and plastic type 
ranging from 60 to 100 %. Angelini et al. (2019) tested detection of blue, 
clear, and white fragments between 1 and 2 m and found that white and 
clear plastics were under counted (50 % and 55 % detection, respec-
tively) relative to blue plastic (95 %). 

4.3. Putting factors affecting detection into context: shoreline 
characteristics 

In our study, the effect of shoreline characteristics on detection was 
also supported. The presence of cobble or vegetation resulted in lower 
detection rates than for sand or other shoreline zones. These results are 
suggestive of at least two non-exclusive mechanisms by which debris 
items have lower detectability: 1) the level of contrast between the item 
and the substrate (marine debris items being camouflaged), and 2) vi-
sual obstruction (marine debris items being hidden behind features). 
Both explanations are supported by prior studies that examined detec-
tion of microdebris (Lavers et al., 2016, Angelini et al., 2019). Angelini 
et al. (2019) found that shell density and sand color influenced detec-
tion, similar to Lavers et al. (2016) who documented the effect of bio-
logical debris and coral rubble presence. They also identified the 
potential importance of false positives (e.g. mistaking a shell fragment 
for hard plastic), something we did not look at in our study, though this 
issue may be less prevalent for macrodebris (Lavers et al., 2016). 

Most survey protocols in use today specify a transect extent that stops 
when vegetation or another barrier is encountered. However, backshore 
vegetation is a noted potential sink of debris. (Brennan et al., 2018; 
Olivelli et al., 2020). Given the variable presence of vegetation on 
shorelines, a relatively lower associated detection rate within vegetation 
compared to the rest of the beach, and the goal of data comparability 
over time, it may be beneficial to treat this area as a separate transect 
compartment if/when incorporated into future monitoring efforts. 

4.4. Putting factors affecting detection into context: number of observers 

Lastly, the variable effort trials showed an effect of the number of 
observers on gross detection rate as well as among-team variability. That 
is, teams of two or three consistently detected more debris than in-
dividuals surveying alone, and team surveys had lower inter-survey 
variability than surveys with one observer only. This could be due to 
an overlap in search area and shorter average distance from debris to an 
observeras the number of observers increases, thus increasing the 
“chances” for an item to be detected. It may also mitigate for differences 
in the proficiency of individual observers. Even when effort is 
controlled, some people are better at detecting debris than others (Baak 
et al., 2022). Furthermore, it may mitigate and/or prevent individual 
observer fatigue on overall debris detection rate (i.e. larger teams share 
the work load) (Lavers et al., 2016). Given intra- and inter-observer 
differences in detection, there is a potential interaction between this 
source of variability and resolution of underlying data trends (i.e., 
temporal shifts in debris load vs shifts in detection due to observer 
turnover), especially if the signal-to-noise ratio is low. Teams of two or 
three will buffer this effect. On the other hand, differences in debris 
counts introduced by varied survey team sizes might be tolerable and/or 

factored into analysis (e.g. Uhrin et al., 2020). 
This study reflected local conditions in Washington State, USA – 

amount and type of debris, as well as shoreline characteristics. We kept 
the known debris quantity constant as a means of control, choosing 20 
items as a manageable amount that was within the range of known local 
abundance, but actual debris concentrations vary (Serra-Gonçalves 
et al., 2019; Uhrin et al., 2022). The impact of debris concentration on 
detection is unknown, although it may factor into the potential for 
observer fatigue (Lavers et al., 2016), or perhaps higher detection of 
smaller items as observers bend over more frequently to assess and 
retrieve debris. 

5. Conclusions 

Through a series of field trials, we explored how characteristics of the 
protocol, the debris itself, and of the shoreline can influence the detec-
tion of marine debris during shoreline surveys. Debris detection rates 
varied according to distance from observer, number of observers, debris 
characteristics (size, color), and shoreline substrate. These results 
highlight considerations for the design of future shoreline surveys, as 
well as for analysis and interpretation of already extant data. 

The benefits and approach to considering detection will depend on 
study goals. For study questions that do not require precise debris esti-
mates or comparisons, our identified sources of bias may be of less 
consequence. For example, Murray et al. (2018) reported that the 
deposition of indicator debris items increased 10-fold following the 
Great Tōhoku Earthquake and Tsunami compared to baseline, a 
magnitude of change that would most likely be evident irrespective of 
potential differences in detection rates associated with survey protocols 
that differed before and after the event. In other cases, where smaller 
differences in amount or rates of change are of interest, uncertainty 
introduced by varied rates of detection could be an important consid-
eration. That is, if factors influencing detection rates covary with spatial 
or temporal variables of interest, there is a risk of confounding detection 
rate with patterns in debris loads. 

In addition to study and protocol design, our results raise consider-
ations for combining and comparing datasets derived from different 
monitoring protocols. As monitoring efforts expand around the world, 
and given the identified need for regional to international indicators and 
metrics to track progress (e.g., United Nations Sustainable Development 
Goals, Sawarkar and Kodati, 2021, United Nations Environment Pro-
gramme, 2021) integration among datasets should be approached 
cautiously. Bias introduced by different survey protocols has been a 
noted challenge to large scale debris assessments (Browne et al., 2015; 
Larsen Haarr et al., 2022; Fraisl et al., 2023). Our study showed that 
aspects of a protocol can potentially result in differing detection rates (e. 
g. in the presence or absence of a lower size limit, different search dis-
tances and numbers of observers) and in turn, different estimates of 
marine debris loads. 

While statistical techniques can account for known biases in data, 
and the level of acceptable bias will vary according to the intended use, 
for marine debris datasets to be readily accessible and interpretable by a 
variety of stakeholders, mitigating sources of error will be beneficial and 
cost effective (Hardesty et al., 2017b; Uhrin et al., 2022). Best practices 
could include a combination of maximizing detection through protocols 
that optimize effort, identifying and promoting consistent detection 
probabilities through protocol standardization and training, adopting a 
minimum size threshold, and documenting shoreline and debris char-
acteristics that influence detection, accounting for them in subsequent 
analyses. 
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